Правило средней линии треугольника. Длина средней линии треугольника

Перед тем как перейти к нахождению средней линии треугольника нужно вспомнить второй признак подобия треугольников и свойства параллельности прямых.

Как найти среднюю линию треугольника – второй признак подобия треугольников

На рисунке 1 показаны два треугольника. Треугольник ABC подобен треугольнику A1B1C1. И прилежащие стороны пропорциональны, то есть AB относится к A1B1 также как AC относится к A1C1. Их этих двух условий и следует подобие треугольников.

Как найти среднюю линию треугольника – признак параллельности прямых

На рисунке 2 показаны прямые a и b, секущая c. При этом образуются 8 углов. Углы 1 и 5 соответственные, если прямые параллельны, то соответственные углы равны, и наоборот.

Как найти среднюю линию треугольника

На рисунке 3, M середина AB, а N середина AC, BC основание. Отрезок MN – называется средней линии треугольника. Сама же теорема гласит – Средняя линия треугольника параллельная основанию и равна его половине.

Для того чтобы доказать, что MN – средняя линия треугольника, нам понадобится второй признак подобия треугольников и признак параллельности прямых.

Треугольник AMN подобен треугольнику ABC, по второму признаку. В подобных треугольниках соответственные углы равны, угол 1 равен углу 2, а эти углы являются соответственными при пересечении двух прямых секущей, следовательно, прямые параллельны, MN параллельно BC. Угол A общий, AM/AB = AN/AC = ½

Коэффициент подобия этих треугольников ½, из этого следует что ½ = MN/BC, MN = ½ BC



Вот мы и нашли среднюю линию треугольника, и доказали теорему о средней линии треугольника, если вам до сих пор не понятно, как найти среднюю линию, смотрите видео ниже.

Вам интересно, как можно вычислить и найти среднюю линию треугольника. Тогда за дело.

Найти длину средней линии треугольника достаточно просто. Так как у треугольника три стороны, соответственно три угла и возможно может быть при построении три средних линий.

Что представляет собой треугольник:

Три стороны (равносторонний, равнобедренный)

Три угла (соответственно остроугольный, тупоугольный, прямоугольный треугольники)

Что такое средняя линия треугольника

Это отрезок. Отрезок соединяет середину двух сторон треугольника. У любого треугольника три средних линии.

Свойство 1: Средняя линия треугольника, параллельна стороне треугольника и равна его половине. Следовательно, для определения средней линии треугольника достаточно знать длину третьей стороны.

Пример: есть треугольник ABC, известно, что средняя сторона КN проведена параллельно АС. Длинна АС=8 см. AB=4 cм, ВС=4 см. Следовательно, для нахождения средней линии треугольника достаточно АС/2 и получить среднюю линию треугольника. Ответ: 4 см средняя линия в заданном треугольнике по существующим параметрам.

Свойство 2: Если в треугольнике провести три средних линий, то образуется четыре равных подобных треугольника. Коэффициент равен ½.

Свойство 3: Средняя линия равностороннего треугольника разбивает треугольник на трапецию и треугольник.

Пример решения задачи: Если мы нарисуем треугольник, то увидим, что вверху треугольника фигура с тремя углами. Внизу четырёхугольника фигура с двумя противоположными сторонами, которые параллельны друг другу.

Средняя линия треугольника интересный характеризующий отрезок, так как обладает несколькими свойствами, позволяющими найти простое решение для казалось бы сложной задачи. Поэтому рассмотрим основные свойства средней линии и поговорим о том, как найти длину этого отрезка в треугольнике.

Треугольник и его характеризующие отрезки

Треугольник это фигура, состоящая из трех сторон и трех углов. В зависимости от углов треугольники делятся на:

  • Остроугольные
  • Тупоугольные
  • Прямоугольные

Рис. 1. Виды треугольников

Основными характеризующими отрезками треугольника являются:

  • Медиана – отрезок, соединяющий вершину с серединой противоположной стороны.
  • Биссектриса – отрезок, делящий угол пополам
  • Высота - перпендикуляр, опущенный из вершины треугольника на противоположную сторону.

Рис. 2. Высота, медиана и биссектриса в треугольнике

Для каждого из характеризующих отрезков существует своя точка пересечения. При соединении трех точек пересечения медиан, биссектрис и высот получается золотое сечение треугольника.

Однако существует и ряд дополнительных характеризующих отрезков:

  • Серединный перпендикуляр - высота восстановленная из середины высоты. Как правило серединный перпендикуляр продолжается до пересечения с другой стороной.
  • Средняя линия - отрезок, соединяющий середины смежных сторон.
  • Радиус вписанной окружности . Вписанная окружность - окружность, которая касается каждой из сторон треугольника.
  • Радиус описанной окружности. Описанная окружность - окружность, содержащая в себе все стороны треугольника.

Смежными сторонами треугольников называют стороны, которые имеют общую вершину. В геометрии существует понятие противоположных сторон, т.е. сторон, которые лежат друг напротив друга и не имеют общих вершин. Но это понятие для треугольников не применимо - любая пара сторон в треугольнике является смежной.

Свойство средней линии

Свойств средней линии не так много, но все они имеют значение при решении задач. Дело в том, что задач на нахождение длины средней линии мало, а потому некоторые из них способны построить ученика в ступор при всей своей простоте.

Поэтому приведем и обсудим все свойства средней линии треугольника:

  • Средняя линия равна половине основания. Вообще правильнее сказать не половине основания, а половине противолежащей стороны. Так как сторон в треугольнике 3, а основание всего одно. Но в общем случае, основанием можно считать любую из сторон треугольника, так что подобная формулировка считается допустимой. К тому же ее проще выучить. В общем случае по этому свойству и определяется длина средней линии треугольника.
  • Средняя линия параллельна основанию. С понятием основания здесь та же ситуация, что и в прошлом свойстве.
  • Средняя линия отсекает от треугольника малый подобный треугольник с коэффициентом подобия, равным 0,5
  • Три средние линии делят треугольник на 4 равных треугольника, подобных большому треугольнику с коэффициентом подобия 0,5

Рис. 3. Средние линии в треугольнике

Собственно формула длины средней линии вытекает из второго свойства:

$m=1\over{2}*a$- где m - средняя линия, а- сторона противоположная средней линии.

Что мы узнали?

Мы поговорили о второстепенных характеризующих отрезках, выделив среднюю линию. Привели свойства средних линий и поговорили о особенностях формулировки этих свойств. Рассказали, как выводится формула длины средней линии треугольника и как средняя линия разбивает треугольник. Все эти свойства используются при решении треугольников.

Тест по теме

Оценка статьи

Средняя оценка: 4.3 . Всего получено оценок: 174.

Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Доказательство. Пусть А 1 , А 2 , А 3 - точки пересечения параллельных прямых с одной из сторон угла и А 2 лежит между А 1 и А 3 (рис.1).

Пусть B 1 В 2 , В 3 - соответствующие точки пересечения этих прямых с другой стороной угла. Докажем, что если А 1 А 2 = A 2 A 3 , то В 1 В 2 = В 2 В 3 .

Проведем через точку В 2 прямую EF, параллельную прямой А 1 А 3 . По свойству параллелограмма А 1 А 2 = FB 2 , A 2 A 3 = B 2 E .

И так как А 1 А 2 = A 2 A 3 , то FB 2 = В 2 Е.

Треугольники B 2 B 1 F и В 2 В 3 Е равны по второму признаку. У них B 2 F = В 2 Е по доказанному. Углы при вершине В 2 равны как вертикальные, а углы B 2 FB 1 и B 2 EB 3 равны как внутренние накрест лежащие при параллельных А 1 В 1 и A 3 B 3 и секущей EF. Из равенства треугольников следует равенство сторон: В 1 В 2 = В 2 В 3 . Теорема доказана.

С использованием теоремы Фалеса устанавливается следующая теорема.

Теорема 2. Средняя линия треугольника параллельна третьей стороне и равна ее половине.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. На рисунке 2 отрезок ED - средняя линия треугольника ABC.

ED - средняя линия треугольника ABC

Пример 1. Разделить данный отрезок на четыре равные части.

Решение. Пусть АВ - данный отрезок (рис.3), который надо разделить на 4 равные части.

Деление отрезка на четыре равные части

Для этого через точку А проведем произвольную полупрямую а и отложим на ней последовательно четыре равных между собой отрезка AC, CD, DE, ЕК.

Соединим точки В и К отрезком. Проведем через оставшиеся точки С, D, Е прямые, параллельные прямой ВК, так, чтобы они пересекли отрезок АВ.

Согласно теореме Фалеса отрезок АВ разделится на четыре равные части.

Пример 2. Диагональ прямоугольника равна а. Чему равен периметр четырехугольника, вершины которого являются серединами сторон прямоугольника?

Решение. Пусть условию задачи отвечает рисунок 4.

Тогда EF - средняя линия треугольника ABC и, значит, по теореме 2. $$ EF = \frac{1}{2}AC = \frac{a}{2} $$

Аналогично $$ HG = \frac{1}{2}AC = \frac{a}{2} , EH = \frac{1}{2}BD = \frac{a}{2} , FG = \frac{1}{2}BD = \frac{a}{2} $$ и, следовательно, периметр четырехугольника EFGH равен 2a.

Пример 3. Стороны треугольника равны 2 см, 3 см и 4 см, а вершины его - середины сторон другого треугольника. Найти периметр большого треугольника.

Решение. Пусть условию задачи отвечает рисунок 5.

Отрезки АВ, ВС, АС - средние линии треугольника DEF. Следовательно, согласно теореме 2 $$ AB = \frac{1}{2}EF\ \ ,\ \ BC = \frac{1}{2}DE\ \ ,\ \ AC = \frac{1}{2}DF $$ или $$ 2 = \frac{1}{2}EF\ \ ,\ \ 3 = \frac{1}{2}DE\ \ ,\ \ 4 = \frac{1}{2}DF $$ откуда $$ EF = 4\ \ ,\ \ DE = 6\ \ ,\ \ DF = 8 $$ и, значит, периметр треугольника DEF равен 18 см.

Пример 4. В прямоугольном треугольнике через середину его гипотенузы проведены прямые, параллельные его катетам. Найти периметр образовавшегося прямоугольника, если катеты треугольника равны 10 см и 8 см.

Решение. В треугольнике ABC (рис.6)

∠ А прямой, АВ = 10 см, АС = 8 см, KD и MD - средние линии треугольника ABC, откуда $$ KD = \frac{1}{2}AC = 4 см. \\ MD = \frac{1}{2}AB = 5 см. $$ Периметр прямоугольника К DMА равен 18 см.

Понятие средней линии треугольника

Введем понятие средней линии треугольника.

Определение 1

Это отрезок, соединяющий середины двух сторон треугольника (Рис. 1).

Рисунок 1. Средняя линия треугольника

Теорема о средней линии треугольника

Теорема 1

Средняя линия треугольника параллельна одной из его сторон и равна её половине.

Доказательство.

Пусть нам дан треугольник $ABC$. $MN$ - средняя линия (как на рисунке 2).

Рисунок 2. Иллюстрация теоремы 1

Так как $\frac{AM}{AB}=\frac{BN}{BC}=\frac{1}{2}$, то треугольники $ABC$ и $MBN$ подобны по второму признаку подобия треугольников. Значит

Также, отсюда следует, что $\angle A=\angle BMN$, значит $MN||AC$.

Теорема доказана.

Следствия из теоремы о средней линии треугольника

Следствие 1: Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 3).

Рисунок 3. Иллюстрация следствия 1

По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $\angle ABB_1=\angle BB_1A_1,\ \angle BAA_1=\angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда

Аналогично доказывается, что

Теорема доказана.

Следствие 2: Три средние линии треугольника делят его на 4 треугольника, подобных исходному треугольнику с коэффициентом подобия $k=\frac{1}{2}$.

Доказательство.

Рассмотрим треугольник $ABC$ со средними линиями $A_1B_1,\ {\ A}_1C_1,\ B_1C_1$ (рис. 4)

Рисунок 4. Иллюстрация следствия 2

Рассмотрим треугольник $A_1B_1C$. Так как $A_1B_1$ - средняя линия, то

Угол $C$ - общий угол этих треугольников. Следовательно, треугольники $A_1B_1C$ и $ABC$ подобны по второму признаку подобия треугольников с коэффициентом подобия $k=\frac{1}{2}$.

Аналогично доказывается, что треугольники $A_1C_1B$ и $ABC$, и треугольники $C_1B_1A$ и $ABC$ подобны с коэффициентом подобия $k=\frac{1}{2}$.

Рассмотрим треугольник $A_1B_1C_1$. Так как $A_1B_1,\ {\ A}_1C_1,\ B_1C_1$ -- средние линии треугольника, то

Следовательно, по третьему признаку подобия треугольников, треугольники $A_1B_1C_1$ и $ABC$ подобны с коэффициентом подобия $k=\frac{1}{2}$.

Теорема доказана.

Примеры задачи на понятие средней линии треугольника

Пример 1

Дан треугольник со сторонами $16$ см, $10$ см и $14$ см. Найти периметр треугольника , вершины которого лежат в серединах сторон данного треугольника.

Решение.

Так как вершины искомого треугольника лежат в серединах сторон данного треугольника, то его стороны -- средние линии исходного треугольника. По следствию 2, получим, что стороны искомого треугольника равны $8$ см, $5$ см и $7$ см.

Ответ: $20$ см.

Пример 2

Дан треугольник $ABC$. Точки $N\ и\ M$ -- середины сторон $BC$ и $AB$ соответственно (Рис. 5).

Рисунок 5.

Периметр треугольника $BMN=14$ см. Найти периметр треугольника $ABC$.

Решение.

Так как $N\ и\ M$ -- середины сторон $BC$ и $AB$, то $MN$ -- средняя линия. Значит

По теореме 1, $AC=2MN$. Получаем: